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SUMMARY 
This paper presents a non-iterative numerical technique for computing time-dependent gassdroplet flows. 
The method is a fully interacting combination of Eulerian fluid and Lagrangian particle calculations. The 
interaction calculations between the two phases are formulated on a pressure-velocity-coupling procedure 
based on the operator-splitting technique. This procedure eliminates the global iterations required in the 
conventional particle-source-in-cell (PSIC) procedure. Turbulent dispersion calculations are treated by a 
stochastic procedure. Numerical calculations and comparisons with available experimental data as well as 
efficiency assessments are given for some sprays typical of spray combustion applications. 
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1.  INTRODUCTION 

Numerical modelling of two-phase turbulent reacting flows has practical applications in the 
development and design of many power-generating devices such as internal combustion engines 
and liquid rocket engines. In these flows, two-way coupling in terms of momentum, heat and mass 
transfer between underlying gas turbulence and dispersed spray droplets plays one of the most 
important physical roles of mixing and consequent spray combustion. In the last two decades 
computational techniques have been developed to characterize the dispersion of spray droplets in 
a gas and the influence of droplets on the gas dynamics. Generally there are two approaches 
commonly used to predict gasdroplet flows. In the first, called the ‘two-fluid’ model or Eulerian 
approach, the effect of two-way coupling is incorporated as extra source terms in the continuum 
equations for both phases. The advantage of using a continuum approach is its relatively high 
computational efficiency, especially for monodispersed systems. 

Another approach, the so-called ‘tracking’ or Lagrangian approach, treats the particles as 
discrete entities in a turbulent flow field and their trajectories are calculated. This approach has 
the flexibility of handling polydispersed spray and the two-way couplings are usually accomp- 
lished through the particle-source-in-cell (PSIC) technique with exchange of momentum, heat 
and mass between the two phases. Both approaches have been studied extensively’*2 and their 
comparative performances have also been investigated re~ent ly .~ .  For typical spray combustion 
applications in which dense spray effects such as droplet collision, break-up and coalescence are 
important and drop dispersions are characterized by a non-uniform particle size distribution, the 
discrete particle approach is more convenient for representing the polydispersed spray. 

In calculating turbulent gasdroplet flows, the most common discrete particle method is the 
stochastic separated flow approach as first described by Gosman and Ioannides5 utilizing the 
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method of Crowe et aL6 In this method the liquid spray droplets are represented by a finite 
number of computational parcels, a random sampling technique is entailed for instantaneous gas 
flow properties based on a specified turbulence model and the resulting fluctuations are used in a 
Lagrangian computation for parcel motion. The mutual coupling between gas and droplets is 
accounted for by estimating the particle source term for each computational cell visited by the 
droplets. This is followed by a recalculation of the flow field incorporating these source terms. 
Thus a global itevative process (in addition to the iterations within the gas flow solution 
procedure) between the continuous phase solver and the droplet equation of motion are 
required.' This method has been used primarily for statistically steady  flow^.^^ * s 9  For transient 
problems this global iteration at each time step can introduce such excessive computational 
requirements that numerical simulation becomes impractical. Dukowicz" has introduced a time- 
splitting method to couple the gas-particle interactions in a transient calculation. The numerical 
scheme used in his method is based on the SOLA code, which utilizes a pressure substitution 
scheme. A similar time-splitting method has been used by Raju and Sirignano" in a pressure 
correction scheme for steady state calculations and by Sabnis and de Jong" in a density-based 
scheme. Recently the method of Dukowicz has been extended by O'RourkeI3 into a comprehens- 
ive computer code KIVA-II.I4 The numerical scheme used in the KIVA-I1 code is based on the 
ALE-ICE scheme, which uses an iterative procedure similar to the SIMPLE algorithm for 
pressure corrections in the ICE. In these newer methods the two-phase coupling procedures are 
still iterative in nature at each time step for transient calculations. 

The main effort of this paper is to present a numerical method for coupling the gasdroplet 
interactions using a newly developed pressure correction scheme. l 5  This method utilizes the 
operator-splitting technique in deriving a predictor-multicorrector sequence which eliminates the 
global iteration between the two phases at each time step. The method of Reference 15 reduces to 
the PIS0 algorithm of Issa16 for single-phase incompressible flow calculations. We have found 
that the present two-phase method is efficient and that the required number of computational 
parcels to achieve satisfactory accuracy is also not excessive. In the following sections, formula- 
tions and validations of this method are presented. 

2.  NUMERICAL MODEL 

The gas flow was formulated using the Eulerian conservation equations of mass and momentum. 
The spray is described by the discrete particle method formulated on a Lagrangian frame. The 
spray is assumed to be sufficiently dispersed (no collision between droplets) and for simplicity the 
gas flow is assumed to be close to incompressible. The governing equations are as follows. 

Gas phase 

aP a - + - ( p U , )  = S", at axi 
a p u i  a a p  a - 
__ + -(pu,) = - - --(rij) + F ~ .  at axi  axj ax j  

Here all variables are ensemble-averaged mean quantities and 

in which p,  is the eddy viscosity. 
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Particle phase 

dvi 
dt 
- = Fpi + gi. 

Equation (5) represents a form in which the virtual mass term, Basset term and pressure 
gradient term have been neglected from the full BBO (Boussinesq-Basset-Oseen) equation. For 
cases of interest in most spray combustion applications, i.e. p 6 pd, dimensional analysis justifies 
the simplification of equation (5). 

Since the formulation here is essentially a statistical approach, each computational parcel 
represents a large number of droplets having equal location, velocity, size and temperature, The 
two-way coupling between the two phases is accounted for by the interaction terms, where 

for evaporating spray;" 

in which d V denotes the computational cell and the effective relaxation time is given as z = t*/fi 
with t, = pddi/18p andf= CDRep/24 .  The form of C, is given in the Appendix. Other details of 
interaction mechanisms such as mass transfer rate and heat transfer rate as well as energy 
equations for both phases can be found in Reference 17, in which the physical aspects of our 
method are described. 

= 0). The 
method is based on the operator-splitting technique, attempting to reach an accurate transient 
solution after prescribed predictor-corrector steps for each time-marching step. The generaliz- 
ation of this operator-splitting technique for deriving pressure correction equations suitable for 
all-speed flows is described ~epa ra t e ly . ' ~ . ' ~  We focus in this paper on the coupling of 
the dispersed phase in the solution procedure. 

Discretization of the gas phase governing equation uses the finite volume approach. Differ- 
encing in the temporal domain employs the implicit Euler scheme. All the dependent and 
independent variables are stored at the same grid location and the variables at the finite control 
volume boundaries are interpolated between adjacent grid points. The discretizations have been 
performed on a general non-orthogonal curvilinear co-ordinate system with a second-order 
upwind scheme for convection terms and the central differencing scheme for diffusion terms. l9 

The resulting discretized equations were solved by a conjugate gradient (CGS) s ~ l v e r . ' ~  
For the incompressible gas flows considered here, the pressure-velocity coupling between the 

momentum and continuity equations is an important issue, since the density is constant. In the 
pressure correction method the derivation of the pressure equation, which includes the effect of 
droplets, plays a key role in determining whether the velocity field satisfies the local mass 
continuity equation. In this study a non-iterative operator-splitting algorithm following the spirit 
of References 16 and 18 is used to derive a predictorxorrector sequence. We seek the finite 

It suffices here to illustrate the calculation method for the non-evaporating case 



236 C. P. CHEN, H. M. SHANG AND Y. JIANG 

difference form of the governing equations (2) and ( 5 )  as follows: 

u;+' - v;  u;+ 1 + u; - 0;" 
+ g i -  (10) - - 

At z** 

The effective relaxation time scale z is evaluated at the second corrector level (**), to be defined 
later. The superscripts n and n+ 1 denote time levels t" and t"+' respectively. Operators A.  and 
H ' (  ) are constructed from the second-order upwind scheme for the convection terms and the 
central differencing scheme for the diffusion terms respectively and Si is the source term associated 
with the Cartesian mean velocity It has been shown in Reference 10 that the 
ensemble-averaged interaction term Fi can be replaced by volume averaging. We split this term as 

R C 1  = -S :*U;+I+R,** ,  (1 1) 
in which S,** and R,** are obtained by rearranging equation (10): 

4 N D  

where m p  = $nr; pd is the particle mass. The parameters S,** and R i *  are momentum control 
volume quantities depending on the available particle information at  the second corrector level to 
be discussed later. 

By the operator-splitting method we divide the predictor<orrector procedure as follows. 

For the predictor step 

vf - v;  uy + (Ui)" - u: -- At -Si+ t n  

The quantities S: and R: are determined from the existing flow fields. These values of Uf and 0: 
are used to evaluate z*, S,* and R: such that a second approximation to the gas velocities can be 
performed: 

By subtracting (14) from (16), we also obtain the velocity correction equation 

For the first corrector step the momentum equation is approximated by 
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Subtracting (17) from (18) gives 
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Taking the divergence of (19) and invoking continuity (VU:* = 0), the pressure correction 
equation is obtained as 

Ai [D:  Ai(P* - P " ) ]  = Ai U T + Ai [D:  H' (UT ' - U : ) ] .  (20) 
Here we have used the short notation D: = ( p / A t  - A ,  + S,*)- ' .  The particle momentum at this 
level is then 

$* - v;  u:* + (Ui)" - o:* 
= g i +  At z*  

The values obtained at this level are used to calculate T**, S:* and R:* and to further update the 
velocities for the gas phase, 

( & - A o )  u : * ~ =  w ( u : ~ ) - A , p *  + s i - s : *  u:*'+R,**, 

( i t  ) 

(22) 

or the velocity correction equation ((22) minus (18)), 

- - A ~  (u:*'- u:*) = - s,** ~ ; * T + s , *  ut* + R:* - R ; .  (23) 

At this stage the mean velocity field satisfies the continuity constraint. To further satisfy the 
momentum conservation, a second corrector step is used 

By subtracting (22) from (24), taking the divergence and invoking continuity again, we obtain the 
following pressure correction and velocity correction equations: 

Ai[D:*Ai(P** - P * ) ]  = Ai UT*T+ A i [ D : * H ' (  U : * T -  V * T ) ]  1 9  (25) 

Following Reference 16, it can be shown that the errors introduced by the operator-splitting 
procedure are less than the truncation errors of the finite difference scheme used in the governing 
equations (9) and (10). Note that the effective relaxation time T depends on the drag function, 
which should contain the effects of turbulence. Here the two important aspects of 
turbulencedroplet  interaction^,^ namely the turbulent droplet dispersion and the turbulence 
modulation effects, can be included. Owing to the dilute spray assumption used in this study, the 
modulation effect is neglected.lS3 The turbulence dispersion effect is accounted for by the Monte 
Carlo procedure utilizing the k--E two-equation model. Physical aspects of this procedure are 
discussed extensively in the l i t e r a t ~ r e . ' - ~ ~ * ~ ' ~  C omputationally, we need to calculate (u;)* at this 
stage by using the newly updated values of turbulence kinetic energy and its dissipation rate. A 
one-predictor (implicit)/one-correction (explicit) procedure for the k- and &-equations suggested 
by Issa16 (see also Reference 18) has been used in this study. We then let U:** and P** be the 
values at level t"+ ' and add (&)* to update the final-time-level particle velocities using the 
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equation 

This brings all variables to the new time level. The time is then incremented and the new 
predictor-corrector sequence is repeated with the new velocities. This algorithm is used for the 
simulation of transient phenomena. If only a statistically steady solution is desired, the time steps 
for the gas phase and particle phase can be made unequal; also, the UFT and U**T calculation 
steps can be neglected. 

3. NUMERICAL APPLICATIONS 

The above procedures have been coded into the MAST (multiphase all-speed transient flow 
solver) programme for various two-phase flow calculations. We first present the solid particle 
dispersion calculation in nearly homogeneous turbulence to calibrate the stochastic simulation of 
particleeturbulence interactions. 

Discrete phase turbulent dispersion 

The stochastic technique used for modelling the discrete phase turbulent dispersion is similar to 
the methods used by, for example, Dukowicz," Gosman and Ioannides' and Shuen et dzo The 
continuous phase turbulence is assumed to be isotropic and the random turbulent velocity 
components u; are assumed to have a Gaussian probability distribution with standard deviation 
(2k/3)'lZ. The u; at any required location is then obtained by randomly sampling the distribution 
and changes discontinuously after each passage of the droplet-turbulence interaction time tin,. 
The time tin, corresponds physically to an eddy lifetime t ,  or to a time t,, for a particle to traverse a 
typical turbulent eddy. In References 3, 5, 10 and 20 different formulations for choosing t,, t,, and 
tint are proposed. Here we choose 1, = 1.65 C;14 k312/& for the characteristic size of an eddy and 
t ,  = 3C,k/-~ for the eddy lifetime to match the asymptotic dispersion analysis of Hinze.'l 

The particle dispersion experimental set-up of Snyder and Lumley" in a grid-generated 
turbulent flow was used for the numerical model validation. Particle densities and sizes are 
chosen to examine the phenomena in which the eddy lifetime controls interaction times (46.5 pm 
diameter hollow glass), the transit time controls interaction times (87.0 pm corn pollen) or the 
interaction-controlling time undergoes a transition from transit time to eddy lifetime (87.0 pm 
solid glass). In this experiment fluid turbulence intensities and length scale information were 
measured. These measured value were used here; thus the k--E model was not solved for this 
calculation. The particle calculations were started at the experimental particle injection point 
x/m=20 (m is a 2.54 cm x 234 cm square mesh). The particle velocity was assumed equal to the 
mean fluid velocity of 6.55 m s -  5000 computational particles were sampled to calculate the 
resulting mean square dispersion with respect to time. 

Comparison of the predicted and measured particle dispersions is shown in Figure 1. The 
agreement is considered quite good. The comparison here is more favourable compared with 
previous calculations by Shuen et aLZ0 and Gosman and Ioannides,' especially for medium 
particles for which the controlling particle-turbulence interaction time goes through a transition 
from t ,  to t,,. In this study we do not estimate tin, as suggested in Reference 20, where to was 
calculated from a simplified BBO equation without the gravity effect. Instead we follow the 
stochastic procedure suggested by Nicholsz3 and trace particle trajectories as time progresses. 
This method has the flexibility of taking into account both the gravity effect (crossing trajectory 
effect) and the non-Stokesian drag law and gives more satisfactory results for medium particles. 
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Figure I .  Particle dispersion in a grid-generated turbulent flow 

Single- fuel-injector case 

The experiments of Hiroyasu and K a d ~ t a ~ ~  are used to validate the transient non-evaporating 
spray calculations. To rigorously model this flow, detailed atomization processes have to be 
resolved at the injector nozzle. Since this phenomenon is not modelled in this study, information 
about the injected droplet size distribution as well as the velocity distribution has to be estimated 
in the vicinity of the injector at which the calculation starts. Following the suggestions of 
Dukowicz," the initial particle injection velocity was determined by the mass flow rate and 
pressure difference of the nozzle. The estimated initial spray angle was also guided by Duko- 
wicz." The initial particle size distribution was given by the following form: 

where D,z is the Sauter mean diameter. 
The test conditions are given in Table I. The spray was assumed to be axially symmetric and 

the calculation was carried out in cylindrical co-ordinates. The computed penetration of the tip of 
the spray as a function of time for the two test conditions is shown qualitatively in Figure 2 and 
compared quantitatively with the experimental data in Figure 3. The comparison is very good 
here. Although the initial jet penetration depends greatly on the assumed initial spray condition, 
the consequent good prediction at the later time demonstrates the accuracy of the numerical 
scheme and importance of the droplet-gas interaction. 
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Table I. Single-orifice injection parameters24 
~ _ _ _ _  

Chamber Injection Gas Mass Sauter mean Nozzle pressure 
gas pressure velocity density flow rate radius (SMR) difference 
(atm) (ms-I )  ( k g m - 3 )  (kgs-I) (w-4 AP (atm) 

1 122.2 1.123 0.00726 5.0 98 
30 102.5 33.70 0.00609 5.0 69 

Fuel: diesel fuel oil, pd = 840 kg m - ’. 
Ambient gas: nitrogen. 
Nozzle diameter: 0.3 mm. 

P = 1 atm, 

T = 0.2 ms 0.4 ms 0.6 ms 0.8 ms 
(a) 

P = 30 atm, 

T = 0.5 ms 1.0 ms 1.5 ms 2.0 ms 2.5 ins 3.0 ms 
(b) 

Figure 2. Particle plots of a single-orifice spray 
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Figure 3. Comparison of computed spray penetration with experimental dataz4 

Table 11. Hollow cone spray parameters 

0 

~ ~~ 

Chamber Injection Injection Gas Mass Sauter mean 
gas pressure velocity angle density flow rate radius (SMR) 
(atm) (m s - ' )  (deg) (kgm-3)  (kgs- ' )  (Pm) 

1 20.0 30 1.123 4 x 1 0 - ~  2.5 

Table 111. Efficiency assessment 

MAST 2D TEACH/PSIC 

Particles CPU time (s) Particles CPU time (s) 

Single-orifice spray 
41 x61 grid 
300 time steps 

Hollow cone spray 
31 x 31 grid 
200 time steps 

600 126.9 800 1420 
1200 135.7 

400 74.9 800 934 
lo00 88.3 
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Hollow cone spray 

A polydispersed, pulsed, hollow cone spray case of practical importance is also chosen for the 
test conditions listed in Table 11. Figure 4 shows the particle plot and the gas velocity vectors for a 
30" spray. With a back pressure of 1 atm the interaction between the gas and droplets is seen to be 
rather strong. The shape of the spray is no longer conical even for very short times and the spray 
penetration is suppressed by the interaction of the droplets with the induced air flow. The gas 
velocity vectors indicate the presence of a vortex near the head of the spray, which curls the spray 
tip towards the outside of the spray. A substantial region of strong inward flow in the centre of the 
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Figure 4. (a) Velocity vectors and (b) particle plot of a 30" hollow cone spray 
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Figure 4. (Continued) 

cone near the injector was also observed. These flow patterns and spray shapes compare quite 
favourably with experimental  observation^.^^ 

The efficiency assessment of the present numerical method is shown in Table 111 for the single- 
orifice and hollow cone spray cases. The CPU times on a CRAY X/MP using the MAST code 
with the present method and the TEACH code with the PSIC method3 for both transient spray 
calculations with At = 0.1 ms are given. It can be seen that the amount of CPU time is reduced by 
about one order of magnitude using the present calculation procedure. Also, the present method 
is rather independent of particle number. This is due to the fact that particles are injected at  each 
time step and the source terms in the continuous phase are updated for all the particles at each 
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Eulerian control volume, while in the TEACH/PSIC method all the particles have to be tracked 
and the continuous phase flow field is held frozen between the global iterations at each time step. 
This PSIC algorithm thus requires substantial computer time and is inherently unsuitable for 
transient calculations. 

4. CONCLUSIONS 

A new numerical scheme based on a non-iterative predictor-corrector pressure-velocity-coupling 
procedure has been developed for transient gas-droplet two-phase flows. The present scheme is 
formulated on a Eulerian-Lagrangian analysis and the two-way interaction between the two 
phases is handled through a strong coupling procedure. This procedure eliminates global 
iterations conventionally used in the PSIC procedure and shows drastic savings in CPU time for 
transient spray calculations. This method has recently been extended to evaporating spray 
calculations. l 7  Good agreements between the calculated results and the experimental data have 
been obtained despite the uncertainties in the inlet conditions for both fluid and droplets. The 
development of the technique is based on the assumption of dilute (non-iterating) sprays. The 
computer code, however, allows easy alteration of models, so that an appropriate model to suit 
the physical problem of interest can be quickly implemented. Experimental studies with better 
defined inlet conditions would be extremely useful in further model validations. 
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APPENDIX: NOMENCLATURE 

drag coefficient 
model constant for k--E model, C ,  = 0.09 
droplet diameter for computational particle p 
C,Rep/24; f=  1 for Re,< 1, f =  1 +0.15 Re:’687 for Re,> 1 
interaction force due to droplets 
particle drag force 
gravity vector 
kinetic energy 
number of droplets for each computational particle p 
number of computational particles 
mean pressure 
droplet radius 
particle Reynolds number; Re, = pdpl Ui + u: - v i l / p  
source terms in momentum equation 
eddy lifetime 
droplet-turbulence interaction time 
particle transit time 
particle relaxation time, t ,  = pddi/lSp 
instantaneous velocity for gases, ui = Ui (mean) + u; (fluctuation) 
instantaneous velocity for droplets 
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Greek letters 
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t 

P 

P 
Pd 

& 

1. 
2. 
3. 

4. 

5. 

6. 

7. 

8. 
9. 

10. 
11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 
22. 

23. 

24. 
25. 

effective particle relaxation time 
fluid (gas) density 
droplet density 
gas viscosity 
dissipation rate of turbulent kinetic energy 
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